Учителі математики у своїй роботі реалізують різноманітні форми перевірки стану навчаності учнів. Безперечну користь дає робота з картками для організації індивідуальної, групової або фронтальної самостійної діяльності школярів на уроці.

Систематичне застосування на уроках карток із завданнями створює сприятливі умови для здійснення диференційованого підходу до учнів на різних етапах вивчення конкретної теми, під час первинного ознайомлення з матеріалом, його закріплення, проведення тематичного чи підсумкового повторення, підготовки школярів до тематичних заліків. Також учитель може використовувати картки із завданнями для здійснення контролю за рівнем знань учнів.

Для зручності роботи з роздавальним матеріалом усі картки кожного комплексу упорядковано за певною системою. Вони розподілені за темами й у кожній темі згруповані відповідно до рівня складності завдань.

У кожній групі карток за певною темою пропонуються три рівні завдань. Завдання першого рівня відповідають обов'язковим результатам навчання. Їх виконання забезпечує успішне вивчення семикласниками всього курсу геометрії. Завдання другого рівня передбачають уміння здійснювати знання в ситуаціях, схожих на ті, що були розібрані в класі. У третьому рівні підібрано завдання, що під силу учням, які захоплюються математикою, вміють творчо застосовувати навуку знання.

На всіх картках із завданнями обов'язкового рівня поряд із задачею вміщено відповідний рисунок, що включає всі необхідні для розв'язання елементи. Досвідчені вчителі рекомендують не відтворювати ці рисунки в робочих зошитах. Семикласники виконують у зошитах тільки необхідні обчислення. У такий спосіб удаляється зекономити навчальний час на уроці.

До кожній картці із завданнями другого рівня у комплекті дається рисунок, розміщений на цій же картці з лінією.

Учні, виконуючи завдання цього рівня, не мають потреби в готовому рисунку, вони повинні виконати необхідні побудови самостійно. Якщо в них виникають утруднення щодо розуміння певної умови задачі або побудови окремих елементів, то їм стане у природі запропонований рисунок. Ураховуючи трудности, які виникають у семикласників під час вивчення геометрії, вважаємо, що ця допомога не буде зайвою. Деякі картки містять незавершений рисунок, на якому відсутні один-два останні етапи побудови. Тож учні пропонуємо виконати побудову і відповідні обчислення чи доведення в робочих зошитах.

Завдання третього рівня семикласники виконують самостійно. Тому картки не містять жодних підказок. За потреби учням надається допомога індивідуально.

Картки, що входять до комплекту, згруповані за темами і в кожній групі розміщені в певному порядку. На кожній картці позначено шифр у лівому верхньому куті. Перша цифра шифру вказує на порядковий номер картки в групі теми. Наприклад, шифр 1. 2. 5 на картці із комплекту вказує, що вона належить до теми 1 — «Прості геометричні фігури та їх властивості», завдання відповідають другому рівню складності, порядковий номер у групі — 5.

Тema 1. Прості геометричні фігури та їх властивості

1.1.1. Точка С належить відрізку АВ. Знайдіть довжину відрізка АВ, якщо AC = 2,9 см, CB = 13,7 см

1.1.2. Точка Е належить відрізку СК. Знайдіть довжину відрізка ЕК, якщо CK = 9,5 см, CE = 3,8 см

1.1.3. Чи може точка В лежати між точками P і T, якщо PB = 8,7 см, BT = 5,9 см, PT = 14,7 см? Відповідь обґрунтуйте
1.1.4. На відрізку
\(AB = 36 \text{ см} \) позначена
точка \(K \). Знайдіть довжини відрізків \(AK \) і \(KB \),
якщо відрізок \(AK \)
більше за відрізок \(BK \)
на 4 см

1.1.5. Промінь \(AD \) проходить між сторонами
\(\angle CAE \). Знайдіть градусну
mіру \(\angle CAE \), якщо
\(\angle CAD = 39^\circ \), \(\angle DAE = 63^\circ \)

1.1.6. Промінь \(BD \) проходить між сторонами
\(\angle ABC \). Знайдіть \(\angle DBC \),
якщо \(\angle ABC = 63^\circ \),
\(\angle ABD = 51^\circ \)

1.1.7. Промінь \(OC \) проходить між сторонами
\(\angle AOB \), який дорівнює
120°. Знайдіть \(\angle AOC \)
i \(\angle COB \), якщо \(\angle AOC \) менший від \(\angle COB \) у 2 рази

1.1.8: Чи може промінь \(e \) проходити між сторонами \(\angle(ab) \), якщо
\(\angle(ab) = 130^\circ \),
\(\angle(ac) = 40^\circ \),
\(\angle(cb) = 90^\circ ? \)
Відповідь обґрунтуйте

1.1.9. На рисунку зображено рівні трикутники. Які з наведених записів є правильними:
1) \(\Delta MKP = \Delta LTF \);
2) \(\Delta MKP = \Delta LFT \);
3) \(\Delta MKP = \Delta FLT \)?

1.2.10. На прямій послідовно позначено
точки \(A, B, C \) і \(D \).
\(AC = 8.3 \text{ см} \), \(BD = 6.7 \text{ см} \),
\(BC = 3.4 \text{ см} \). Знайдіть
dовжину відрізка \(AD \)

1.2.11. Точка \(P \) лежить між
точками \(M \) і \(F \); \(E \) і \(N \) — се
редини відрізків \(MP \) і \(PF \)
відповідно. Знайдіть довжину відрізка \(MF \), якщо
\(EN = 7,4 \text{ см} \)

1.2.12. На відрізку \(MN \)
dовжиною 38,4 см позна
чено точку \(K \). Знайдіть
dовжини відрізків \(MK \)
i \(NK \), якщо \(MK:NK = 7:5 \)

1.2.13. На відрізку \(AB \) позна
чено точки \(M \) і \(N \). Відомо,
що \(AB = 12 \text{ см} \), \(AM = 8 \text{ см} \),
\(BN = 10 \text{ см} \). Знайдіть довжину
відрізка \(MN \)

1.2.14. Промені \(OF \) і \(OT \)
проходять між сторонами
\(\angle POL \). Знайдіть \(\angle TOL \),
якщо \(\angle POT = 78^\circ \),
\(\angle FOL = 52^\circ \), \(\angle POF = 39^\circ \)

1.2.15. Кути \(FOK \) і \(MOE \)
рівні. Доведіть, що
кути \(FOM \) і \(KOE \) також
рівні

1.2.16. Кут \(DCE \)
dорівнює \(\angle KCP \)
i \(\angle DCF \) дорівнює
\(\angle FCP \). Доведіть, що
\(\angle ECF = \angle FCK \)
1.2.17. Пряма a перетинає відрізки AB і BC. Чи перетинає пряма a відрізок AC? Відповідь обґрунтуйте.

1.3.18. Промінь DC проходить між сторонами $\angle ADK$, DM — бісектриса $\angle ADC$, DP — бісектриса $\angle CDK$. Знайдіть $\angle ADK$, якщо $\angle MDP = 82^\circ$.

1.3.19. Дано пряму a і точки A, B, C і D, які не належать цій прямій. Чи перетинає пряму a відрізок BD, якщо відрізки AB, BC і AD перетинають її?

1.3.20. Відрізок довжиною 10 см складений з чотирьох нерівних частин. Відстань між серединами середніх частин дорівнює 3,5 см. Знайдіть відстань між серединами крайніх частин.

1.3.21. На прямій AB позначена точка C. Відомо, що $AB = 9,7$ см, $BC = 4,9$ см. Яку довжину може мати відрізок AC?

1.3.22. Із вершини кута 110° проведено промінь, який перпендикулярний до бісектриси цього кута. Які кути утворює цей промінь зі сторонами поданого кута?

1.3.23. На відрізку AB довжиною 36 см позначена точка K. Знайдіть довжини відрізків AK і BK, якщо $0,5AK = 0,25BK$.

Тема 2. Суміжні та вертикальні кути

2.1.1. На рисунку знайдіть все пари суміжних і вертикальних кутів.

2.1.2. Чи можуть два суміжні кути дорівнювати 36° і 154°? Відповідь обґрунтуйте.

2.1.3. Знайдіть суміжні кути, якщо один із них на 84° більше від другого.

2.1.4. Один з кутів, утворених при перетині двох прямих, дорівнює 72°. Знайдіть інші кути.

2.1.5. Один із суміжних кутів у 3 рази більше від другого. Знайдіть ці кути.

2.2.6. Кут між бісектрисою кута і продовженням однієї зі сторін дорівнює 136°. Знайдіть $\angle FED$.

2.2.7. Різниця двох кутів, утворених при перетині двох прямих, дорівнює 62°. Знайдіть величини всіх утворених кутів.

2.2.8. Один із суміжних кутів у 5 разів більше від другого. Знайдіть кути, які утворює бісектриса більшого кута зі сторонами меншого.

2.2.9. Сума трьох кутів, утворених при перетині двох прямих, дорівнює 325°. Знайдіть ці кути.

2.2.10. Сума двох кутів, утворених при перетині двох прямих, дорівнює 86°. Знайдіть ці кути.
2.2.10. На рисунку
\[\angle PMF = 32^\circ, \]
\[\angle KMQ = 87^\circ. \] Знайдіть \[\angle KMR. \]

2.2.11. Різниця двох суміжних кутів дорівнює меншому з них. Знайдіть ці кути

2.3.12. \[\frac{4}{7} \] одного із суміжних кутів і \[\frac{1}{4} \] другого складають у сумі прямий кут. Знайдіть ці суміжні кути

2.3.13. Більший із суміжних кутів у 4 рази більше від різниці цих кутів. Знайдіть ці суміжні кути

2.3.14. Сума вертикальних кутів у 2 рази менше від кута, суміжного з кожним із них. Знайдіть ці кути

2.3.15. Сума трьох кутів, утворених при перетині двох прямих, на 280\(^\circ\) більше від четвертого кута. Знайдіть ці чотири кути

2.3.16. Дано:
\[\angle CEF = \angle EFB. \] Доведіть:
\[\angle CEH = \angle QFB \]

2.3.17. Дано:
\[\angle FED = \angle QFB. \] Доведіть:
\[\angle AFE + \angle CEF = 180^\circ \]

3.1.1. Дано: \(\angle 1 = \angle 2, \]
\(AB = CB. \) Доведіть:
\(\triangle ABD = \triangle CBD \)

3.1.2. Дано: \(AO = CO, \]
\(BO = DO. \) Доведіть:
\(\triangle AOB = \triangle COD \)

3.1.3. Дано:
\(\angle BAC = \angle CAD, \]
\(\angle BCA = \angle DCA. \) Доведіть: \(AB = AD \)

3.1.4. Дано:
\(\angle DEA = \angle FMA, \]
\(AE = AM. \) Доведіть:
\(\triangle ADE = \triangle AFM \)

3.1.5. Дано: \(AD = AK, \]
\(CD = CK. \) Доведіть:
\(\triangle ADC = \triangle AKC \)

3.1.6. Дано: \(\angle 1 = 75^\circ, \]
\(\angle 2 = 105^\circ. \) Доведіть:
\(\triangle ABC — рівнобедрений \)

3.1.7. Периметр рівнобедреного трикутника дорівнює 38 см, основа — 12 см. Знайдіть бічну сторону трикутника
3.1.8. Знайдіть периметр рівнобедреного трикутника, основа якого дорівнює 9,8 см, а бічна сторона — 7,6 см

3.2.9. Дано: E — середина AC, $AB = CD$, $\angle 1 = \angle 2$. Доведіть: $BE = DE$

3.2.10. Дано: BD — бісектриса $\triangle ABC$, $\angle 1 = \angle 2$. Доведіть: $AB = BC$

3.2.11. У рівнобедреному $\triangle ABC$ з основою AC на медіані BD зазначена точка K. Доведіть, що $\triangle AKC$ — рівнобедрений

3.2.12. Дано: $AD = DC$, $AE = EC$. Доведіть: $\triangle ABC$ — рівнобедрений

3.2.13. У рівнобедреному $\triangle DEF$ ($DF = EF$) від вершини F відкладені рівні відрізки FM і FK. Доведіть, що $\triangle DME = \triangle DKE$

3.2.14. У $\triangle DEF$, $DE = EF$. Знайдіть периметр $\triangle DEF$; якщо довжина висоти EO дорівнює 8 см, а периметр $\triangle DEO$ — 43 см

3.2.15. На бічних сторонах рівнобедреного $\triangle ABC$ з основою AC відкладені рівні відрізки AM і CN. BD — медіана $\triangle ABC$ перетинає відрізок MN у точці O. Доведіть, що $BO = $ медіана $\triangle MBN$

3.2.16. На медіані EK $\triangle DEF$ позначена точка P. Відомо, що точка P рівновіддалена від точок D і F. Доведіть, що $\triangle DEF$ рівнобедрений

3.2.17. Дано: $\triangle AOD$ — рівнобедрений; $\angle BAO = \angle CDO$. Доведіть: $\angle B = \angle C$.

3.2.18. У рівнобедреному $\triangle ABC$ точка D — середина основи AC. На променях AB і CB за $\triangle ABC$ позначені точки M і N відповідно так, що $BM = BN$. Доведіть, що $\triangle BDM = \triangle BDN$

3.2.19. Периметр трикутника дорівнює 40 см. Медіана ділить трикутник на два трикутники, периметри яких дорівнюють 28 см і 24 см. Знайдіть довжину медіани

3.2.20. Периметр рівнобедреного трикутника в 4 рази більше від основи і на 10 см більше від бічної сторони. Знайдіть сторони трикутника

3.2.21. У рівнобедреному $\triangle ABC$ з основою AC на сторонах AB і BC позначені відповідно точки M і N так, що $\angle ACM = \angle CAN$. Доведіть, що $\triangle MBN$ — рівнобедрений
3.3.22. У рівнобедреному $\triangle DEF$ ($DF = EF$) від вершини F відкладені рівні відрізки FM і FK на сторонах DF і FE відповідно. Доведіть, що $\angle DME = \angle DKE$.

3.3.23. Доведіть, що в рівнобедреному трикутнику медіани, проведено до бічних сторін, рівні.

Тема 4. Паралельність прямих.
Сума кутів трикутника

4.1.1. Дано: $\angle 1 = 63^\circ$, $\angle 2 = 117^\circ$. Чи паралельні прями a і b?

4.1.2. Дано: $\angle 1 = 47^\circ$, $\angle 2 = 47^\circ$. Чи паралельні прями a і b?

4.1.3. Один з кутів, утворених при перетині двох паралельних прямих, дорівнює 35°. Знайдіть інші кути.

4.1.4. Прямі a і b паралельні, c — січня. $\angle 1 + \angle 2 = 112^\circ$. Знайдіть усі утворені кути.

4.1.5. У рівнобедреному трикутнику кут при основі дорівнює 73°. Знайдіть кут при вершині.

4.1.6. У рівнобедреному трикутнику кут при вершині дорівнює 86°. Знайдіть кути при основі.

4.1.7. Один із зовнішніх кутів трикутника дорівнює 116°. Знайдіть внутрішні кути, несуміжні з ним, якщо один з них дорівнює 82°.

4.1.8. У рівнобедреному трикутнику зовнішній кут при вершині дорівнює 86°. Знайдіть кути $\triangle ABC$.

4.1.9. У $\triangle ABC \angle A$ дорівнює 50°, а $\angle B$ у 12 разів менше від $\angle C$. Знайдіть кути $\triangle ABC$.

4.1.10. У $\triangle ABC \angle A$ дорівнює 35°, $\angle C = 45^\circ$. Знайдіть величину $\angle B$.

4.1.11. Прямі AD і BC паралельні; $\angle ACB = 43^\circ$, AC — бісектриса $\angle BAD$. Знайдіть $\angle BAC$.

4.1.12. Дано: $\angle 1 = \angle 2$. Доведіть, що прямі a і b паралельні.

4.1.13. Дано: $a || b$, c — січня; $\angle 1 : \angle 2 = 7:2$. Знайдіть усі утворені кути.
4.2.14. Знайдіть кути ΔDEF, якщо
∠D + ∠E = 70°,
∠E + ∠F = 150°

4.2.15. ΔABC — рівно-бедренний з основою AB. Бісектриси кутів при основі перетинаються в точці D,
∠ADB = 100°. Знайдіть ∠C

4.2.16. Сума внутрішніх кутів рівнобедреного трикутника разом з одним з зовнішніх дорівнює 254°. Знайдіть величину внутрішніх кутів

4.2.17. Знайдіть градусні міри кутів x і y

4.3.21. AE — бісектриса ∠A Δ ABC. Промінь AK перпендикулярний до AE. Доведіть, що промінь AK — бісектриса одного з зовнішніх кутів трикутника при вершині A

4.3.22. Один із кутів трикутника дорівнює сумі двох інших. Доведіть, що трикутник прямокутний

Тема 5. Коло

5.1.1. У колі проведено діаметри KP і NM. Доведіть, що MK = PN

5.1.2. На рисунку радіус OF проходить через середину хорди DE. Доведіть, що OF ⊥ DE

5.1.3. Iз точки A, яка лежить зовні кола, проведено дотичні AB і AC. Доведіть, що AO — бісектриса ∠BOC

5.2.4. На рисунку ∠ABC = 32°, O — центр кола. Знайдіть ∠AOC

4.3.18. Дано:
∠ABE = ∠CBE,
∠EDC = 129°. Знайдіть градусну міру ∠x

4.3.19. Дано: AB || CE;
∠BAC = 20°;
∠BCE: ∠ECD = 4:1.
Знайдіть ∠BCD

4.3.20. Один із кутів трикутника дорівнює 100°. Висота і бісектриса, проведена з вершини цього кута, утворюють кут 20°. Знайдіть невідомі кути трикутника
5.2.5. Пряма дотикається до кола з центром \(O \) в точці \(A \). На дотичній по різні боки від \(A \) позначені точки \(B \) і \(C \) так, що \(OB = OC \). Доведіть, що \(BA = AC \).

5.2.6. Пряма \(a \) дотикається до кола в точці \(B \). Знайдіть \(\angle AOB \), якщо \(\angle ABC = 63^\circ \).

5.2.7. У колі із центром \(O \) проведена хорда \(AB \), а із точки \(C \), яка лежить зовні кола, — дотична \(BC \). \(\angle ACB = 20^\circ \). Знайдіть кути \(\Delta AOB \).

5.2.8. У колі із центром \(O \) діаметр \(AE \) і радіус \(OB \) утворюють кут, який дорівнює 100°. Визначте кути \(\Delta AOB \).

5.3.9. У \(\Delta ABC \) вписане коло, яке дотикається до його сторони в точках \(M \), \(K \) і \(P \). Знайдіть суму відрізків \(AM \), \(BK \) і \(CP \), якщо \(P_{AMK} = 24 \text{ см} \).

5.3.10. Із точки \(A \), яка лежить зовні кола із центром \(O \), проведені дотичні \(AB \) і \(AC \). Кут, утворений цими дотичними, дорівнює 80°. Знайдіть \(\angle BOC \).

5.3.11. На рисунку хорда \(DC \) перетинає діаметр \(AB \) під кутом 60°, \(KE = 4 \text{ см} \), \(FK = 6 \text{ см} \). Знайдіть довжину хорди \(DC \).

Література