Навчання математики в старшій школі, на думку авторів, має складатися з двох частин: продовження навчання описової статистики і знайомства з елементами математичної статистики. Першим завданням присвячена робота [1]. У статті стисло запропоновано зміст, методику навчання елементів математичної статистики. У вітчизняній методичній літературі відсутні роботи, присвячені цій проблемі. Докладно ці питання будуть представлені в книзі "Статистика, Імовірність, комбінаторика у старшій школі", яка вийшла друком у видавництві "Основа".

1. Чи потрібно і чи можливо знайомити старшокласників з елементами математичної статистики

Учителі може виникнути природне запитання: чи є потреба в навчанні учнів старшої школи математичної статистики? Чи не краще використати цей час для розв'язування задач з параметрами, чи рівняння, що містять вирази під знаком модулі? Адже на вступних іспитах чи на зовнішньому тестуванні учнім навряд чи запропоноване завдання з математичної статистики, а рівняння з параметрами або з виразами під знаком модуля майже обов'язково можуть зустритися. Можна, зрозуміло, навести приклади, коли у відомих зарубіжних вищих навчальних закладах до змісту вступних іспитів включені завдання Імовірнісно-статистично-гістографічну характеристику [2]. Враховуючи, що вітчизняна освіта намагається відповідати європейським стандартам, можна спрогнозувати, що це незабаром станеться і в українських навчальних закладах. Але справа не в тому.

Елементи математичної статистики мають неабияку загальнокультурну, загальноосвітню значущість. Ми часто-густо читаємо в газетах, чуємо по радіо або бачимо на екранах телевізорів результати проведення соціологічних опитувань, які, як правило, містять інформацію про небезпеку прогнозу. Вдумливий читаць, радіо слухач, теледозвіл обов'язково запитує себе: а що це таке, як вона обчислюється? Адже прогноз має ймовірнісний характер. І тут на допомогу приходить математична статистика. Освічена людина не повинна приймати на віру інформацію з різних джерел. Потрібно приймати в загальних рисах уважати, як ті чи інші висновки можуть бути отримані. Інший приклад. Зараз є численні телепередачі, ведучі які переконують глядачів у тому, що аудиторія, зібрана в телестудії, є представницькою, що вона непогано представляє, наприклад, населення країни. Користуючись цим, ведучі роблять висновок стосовно поглядів, симпатій, уподобань до тієї чи іншої політичної сили для громадян усієї країни. Іноді таким чином відбувається маніпулювання думками телеглядачів. Безумовно, кожна людина має критично ставитись до висновків, зроблених на підставі дослідження певної вибірки. А це можна зробити, якщо володіє певним обсягом математико-статистичних знань. Отже, ці знання бажано мати кожному свідомому громадянину.

Не менш значущими є елементи математичної статистики в прикладному плані, для професійного становлення особистості. Де-кто може заперечити: адже ці знання можна прибрати під час продовження освіти у вищих навчальних закладах. Це так. Але з досвіду ми знаємо, що надовго зберігаються ті знання, які набувають поступово, упродовж тривалого часу, коли на кожному етапі ці знання уточнювались, поглиблювались, розширювались. Безумовно, не йдеться про те, щоб школа замінила професійні навчальні заклади. Але вона може й повинна дати уявлення про основні статистичні ідеї. Потрібно, щоб кожна людина розуміла: якщо вона хоче статистичним шляхом підтвердити якусь свою думку, то відповідний статистичний матеріал має бути надійним, достатнім за обсягом і представницьким. З дитинства людина має засвоїти, що не можна приймати відповідальних рішення на підставі інформації, яка не задовольняє її умови.

Цінністю елементів математичної статистики полягає і в тому, що вони фактично продовжують формування важливих ідей, які розглядаються в курсі математики. Неважко побачити аналогію між вимірюванням величин іцініованням невідомих параметрів, між похибками вимірювання і по- будовою довірочих інтервалів, між перевіркою статистичних гіпотез і математичним обґрунтуванням.
або спростуванням тверджень, між функціональною змістовою лінією і регресивним аналізом тощо. Отже, математична статистика не є стороннім розділом для шкільного курсу математики, вона природно вписується в його зміст.

Нарешті, не можна не сказати про те, що в деяких країнах математична статистика увійшла до програм середніх коледжів. Яскравим прикладом слугує більшу часть книга [3], яка є перекладом відповідного підручника.

Чи доступно для учнів оволодіння елементами математичної статистики? Відповідаючи на запитання, зауважимо, що автори пропонують цей матеріал для учнів, які мають достатню загальномунаукову підготовку, наприклад для класів з поглибленним вивченням математики, або як предмет спецкурсів. Але не це є головним. Чим можна забезпечити доступність навчання математичної статистики?

По-перше, змістом і методикою навчання. Той зміст, що пропонують автори, спирається на невеликий математичний, теоретичний-ймовірнісний апарат. З теорії ймовірностей, окрім матеріалу, передбаченого програмою [4], знадобиться лише викладення біноміального розподілу. Головні статистичні ідеї цілком можливо реалізувати, користуючись нерівністю Чебишева. Адже випускники класів не повинні обов'язково володіти методами і критеріями, які мають досить велику точність. У школі важливо сформувати загальне розуміння цих ідей, заляшчити навички професійних вмінь для вищих навчальних за кладів.

По-друге, автори переконані в тому, що головні статистичні ідеї потрібно формувати в учнів прямим майже всього терміну навчання. Як це робити, викладено в матеріалах [5-8]. Така послідовна праця використовує структурність вивчення, вона відрізняється від задач теорії ймовірностей.

2. Чим займається математична статистика?

Насамперед необхідно як вчителю, так і учням усвідомити, які задачі розв'язує математична статистика, чим вони відрізняються від задач теорії ймовірностей. Теорія ймовірностей у межах побудованої ймовірнісної моделі розробляє методи для обчислення ймовірностей випадкових подій і числових характеристик випадкових величин.

3. Методика та пошук

3.1 Побудова випадкової вибірки

Про перші три з перелічених прийомів йшлося у [1]. Зокрема було розглянуто побудову випадкової вибірки. Сутність відбіркового методу полягає в тому, що за інформацією, отриманою для невеликих класів предметів, осіб, подій, ми робимо висновки для великих класів. Важливо тільки, щоб ці невеликі класи, які називають вибірками, задовольняли певні вимоги. У вивченні елементів математичної статистики знадобиться зрозуміти, що статистичне охарактеризувати випадкову вибірку.

Вибіркою обсягу я з деякого розподілу називається сукупність взаємно незалежних випадкових величин X_1, X_2, \ldots, X_n, кожна з яких має цей розподіл. Випадкові величини X_1, X_2, \ldots, X_n називають елементами вибірки.
Наприклад, коли кажуть, що є вибірка обсягу \(n \) із біноміального розподілу з параметрами \(m \) і \(p \), то це означає, що генеральна сукупність є випадковою величиною із цим розподілом, тобто ймовірністю моделю відповідної ситуації є біноміальний розподіл. Його встановлення з теоретичних міркувань є послідовним випробуванням, які задовольняють умови випробувань Бернуллі. Це модель, а за даними вибірки, зокрема, можна встановити, наскільки добре вона характеризує реальну ситуацію. Докладно необхідні пояснення надано в згаданий книзі.

Потрібно постійно формувати розуміння того, що не можна будь-які результати вимірювань \(x_1, x_2, ..., x_n \) вважати вибіркою. Цей мето може слугувати такий софізм. Ми кажемо, що вибірку утворюють результати декількох незалежних вимірювань, які проводяться в однакових умовах. Однак якщо ми контролюємо всі умови досліду, то всі результати вимірювань є одноманними, тобто не буде жодної невизначеності. А якщо ми контролюємо не всі умови досліду, то звідки ми знаємо, що вони є одноманними. Не існує надійного способу перевірити це, що вимірювання можна вважати вибіркою. Впевненість у правильності відповідних методів роботи набувається в процесі накопичення досвіду.

3.2 Оцінювання невідомих параметрів

Однією з основних задач математичної статистики є оцінювання невідомих параметрів генеральної сукупності. Пропедевтичне роз'язання цієї задачі рекомендувалося у роботах [5–8] розглядали в молодших класах з тим, щоб поступово формувати в учнів головні статистичні ідеї. У старшій школі задача оцінювання параметрів може бути розглянута в загальній постановці.

Тут вводяться поняття оцінювання функції параметра як функції від елементів вибірки. Її значення від реалізації вибірки називають оцінкою параметра. Розглядаються такі властивості оцінюваної функції, як несуненість, спроможність. Для оцінки, яка є значеним незсуненої оцінюваної функції, її зсув від дійсного значення параметра є незнанням. Можна додати, що відносна частота події є незсуненою оціною функціїю її ймовірності, а вибіркове середне — незсуненою оціною функції математичного сподівання. Водночас вибіркова дисперсія є зсуненою оціною дисперсії. Тому часто густо у статистиці (особливо, коли маємо справу з вибірками невеликого обсягу) замість вибіркової дисперсії

\[
S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2
\]

застосовують величину

\[
\hat{S}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2,
\]

яка є незсуненою оціною функції дисперсії. Тут

\[
X_1, X_2, ..., X_n
\]

є вибірка,

\[
\bar{X} = \frac{X_1 + X_2 + ... + X_n}{n}
\]

є вибіркове середнє.

Спроможність оцінювань функцій (оцінок) деякого параметра означає, що із збільшенням кількості спостережень вона наближається до дійсного значення параметра. Відносна частота події є спроможною оціною функцією її ймовірності, а вибіркове середнє — спроможною оцінюваною функцією математичного сподівання.

3.3 Побудова довірчих інтервалів для невідомої ймовірності події

Можна запропонувати такий план формування зазначеного прийому статистичної діяльності:

- показати доцільність, значущість оцінювання поняттям довірчого інтервалу;
- роз'яснити сутність інтервального оцінювання невідомого параметра генеральної сукупності;
- сформувати загальну ідею побудови довірчого інтервалу;
- побудувати довірчий інтервал для невідомої ймовірності події;
- розглянути приклади.

Спочатку слід показати учням доцільність вивчення поняття довірчого інтервалу для невідомого параметра. Це можна зробити, спираючись на аналогії з наближенням обчислениями. Побудувати оцінку невідомого параметра за результатами спостережень означає знайти наближене значення цього невідомого параметра. Але, говорячи про наближення чи користуючись наближеннями значеннями, треба чітко уявити собі й точність наближення, тобто знати границі абсолютної похибки. Без уявлення, з якою точністю взяти наближені значення, саме по собі вони практично змісту не мають. Така загальна ідея знаходить свій провір в статистиці. Тут поняття точності наближення реалізується у вигляді довірчого інтервалу.

3.4 Вибірка статистичних гіпотез

Формування зазначеного прийому статистичної діяльності вартовий план.
1. Показати доцільність, значущість уміння перевіряти статистичні гіпотези.
2. Досягти розуміння понять статистичної гіпотези.
3. Сформулювати узагальнену схему перевірки статистичних гіпотез.
4. Ввести необхідні поняття.
5. Розглянути різні методи перевірки гіпотези про значення невідомої ймовірності події.

У багатьох випадках перевірка статистичних гіпотез може істотно допомогти в обґрунтуванні прийняття того чи іншого рішення. Наприклад, ухваленню рішення про перехід на нову технологію виробництва якогось виробу повинна передувати експериментальна перевірка цієї технології, збір необхідної інформації, її обробка, перевірка того, чи свідчать зібрані дані на користь нової технології. Узагальнена схема послідовності ходу міркувань, якими користуються під час перевірки статистичних гіпотез, має такий вигляд:

- формулюється нульова (основна) гіпотеза;
- одержують фактичні дані про події, щодо яких була сформульована нульова гіпотеза;
- обчислюється ймовірність того, що результат міг бути отриманий за умови, що нульова гіпотеза є правильною;
- якщо ймовірність одержання результату за умови, що нульова гіпотеза правильно, є малою, нульова гіпотеза відхиляється на рівні значущості, який дорівнює цій ймовірності;
- визначається, що й у тому випадку, коли відхиляється і коли не відхиляється нульова гіпотеза, можливим є певний ризик.

Література