АКТУАЛЬНА ПРОБЛЕМА

ЧИ ПОТРЕБУЄ РЕФОРМУВАННЯ ГЕОМЕТРИЧНОЇ ОСВІТИ?

Я. С. Бродський, О. Л. Павлов, А. К. Сліпenko, м. Донецьк

Уперше статтю опубліковано в № 7 (55) за 2004 рік нашого журналу.

Проблеми навчання геометрії у вітчизняній школі належать до найскладніших. Довгий час характер школійної геометричної освіти в Україні значною мірою визначався лише одним підручником. У зв'язку з реформуванням освіти взагалі і математичної зокрема, настав час реалізувати альтернативні підходи, урізноманітнити навчально-методичне забезпечення курсу геометрії. Цього вимагає концепція реформування освіти в Україні, зокрема впровадження диференційованого навчання.

Журнал «Математика в школах України» розпочав обговорення проблем геометричної освіти [1], обговорення, яке необхідне всім, хто навчає геометрію або забезпечує це навчання. Воно необхідне для усвідомлення стану геометричної освіти, для пошуку шляхів його удосконалення. Усвідомлюючи важливість проблем для майбутньої математичної освіти, автори наважилися теж взяти участь в її обговоренні.

Геометрична освіта

Геометрійні знання в усі часи складали серцевину повноцінної загальної освіти. Чому це так, у чем феномен геометричної освіти, що дозволяє досить спеціальній науці міцно триматись протягом тисячоліт вічній трійці п’ятрі обов’язкових для вивчення дисциплін? Відповідь на ці запитання подавалися у стислій чи розгорнутій формі неодноразово. Згадаємо лише чудову роботу Ф. Клейна в [2], майже столітньої давності (але доступну вітчизняному читачеві), чи статтю О. Д. Александрова [3]. Але і в цих працях, і в багатьох інших публікаціях (див., наприклад, [4–8]) згадуються проблеми у визначенні змісту геометричної освіти, методики викладання геометрії.

Характерно, що з часів Ф. Клейна сучасній школі так і не вдалося знати компроміс між геометрією Евкліда і сучасними потребами в геометричній освіті. Значною мірою це пов’язано з тим, що викладання геометрії треба суміщати полярні «лид логіки і жар уявлення» [3], а ще потрібно задовольнити досить широкий спектр прикладних запитів (проби, які, до речі, багато говорять, але, за великим рахунком, їх і не задовольняють). І, нарешті, неназваним окремож можна побачити досить тривожну картину викладання геометрії у вітчизняній школі: більшість її вихованців геометрію бояться, не люблять, не знають, а часто-густо й не бажають знати. Висновок однозначний: геометрична освіта вимагає реформації.

Пошук шляхів реформування геометричної освіти в школі є одним з найважливіших і найскладніших завдань реформи математичної освіти взагалі.

Геометрія як наука


Таким чином, геометрію можна охарактеризувати як відображення в соціальному досвіді специфічного стилю мислення, призначеного для сприйняття фізичного простору. Як слід, зазначимо в [3] О. Д. Александрова, «геометрія із поєднанням живого уявлення і строгої логіки, в якому вони взаємно організовано і направляють одне одного». Безумовно, вказане характеризує не вичерпне змісту поняття геометрії. Опис предмета геометрії
є не менш важливим засобом її визначення. Геометрія — це роз- діл математики, предметом якого є фігури, їхні властивості і відно- шення між ними. Ця характеристика предмета геометрії по- требує роз'яснення з багатьох причин, зокрема у зв'язку з існуванням різних геометрій: евклідо- вої (елементарної) геометрії, ана- літичної, диференційної, неевклідової тощо.


Практично два тисячоліття в гео- метрії Евкліда не знімалися зали- шались як предмет, так і методи дослідження. Відкриття методу координат і його застосування привело до створення аналітичної геометрії у XVII ст. завдяки пра- цям Р. Декарта і П. Ферма. У ре- зультаті розширилося коло фігур, які розглядаються (криві і по- верхні другого порядку). На відміну від синтетичної геометрії, в аналітичній головним інструмен- том доведені був метод коор- динації (хоча аналітична геометрія теж викладається дедуктивно).

Цей метод дозволив «алгебраїзувати» геометричні задачі, звести їх до алгебраїчних перетворень і обчислень.

Розвиток методів математичного аналізу у XVII — XVIII ст. привів до їх широкого застосування в геометрії. Це значно розширило коло фігур, які розглядалися, і поглибиво дослідження їхніх властивостей. Так виникла диференційна геометрія, яка вивчає криві і поверхні методами математичного аналізу.

У першій половині XIX ст. були відкриті неевклідові геометрії, хоча на найпростішу з них — сфе- ричну — людство звернуло увагу лише на початку нашої ери, але не усвідомило її принципової відмін- ності від евклідової геометрії.

До цього часу вже з'явилися нариси геометрії, в якій про- сторові фігури, а також методи роз'язання і дослідження про- сторових задач вивчаються за до- помогою побудов їх образень на площині, проективна геометрія, яка вивчає властивості фігур, що не змінюються за так звані проективні перетворення, наприклад під час проектування. Наприкінці XIX — на початку XX ст. виникла нова геометрія — топологія. Її ще називають гео- метрією гумової підключення.

У математичних енциклопедіях представлена декілька десятків геометрій. Виникає питання: «Чим відрізняються одна від од- ної геометрії і що вони мають спільного?»

Відмінності різних геометрій по- в'язані або з відмінностями ос- новних понять і аксіом, тобто «середовище», в яких будуються геометрії (наприклад екліпідова геометрія і геометрія Лобачевського), або з різними методами дослідження (наприклад екліпідо- ва та аналітична геометрії).

Об'єдную все геометрія тлумачення їхнього предмета стосовно відо- шення до навколишнього середо- вища. Характер цього відношення проявляється, наприклад, під час розгляду питання: «Чи є кришка стола прямоугольним паралелепіпеп- дом?» Неважко помітити, що це питання є не зовсім коректним: кришка стола — це реальне фізичне тіло, яке має колір, масу, певні розміри тощо, а паралелепіпед — це ідеальний об’єкт, який, крім форми, властивостей і розмірів, нічого не має. Об’єкти різної природи не можуть збігатися. Безумо- важно, малося на увазі питання «Чи має кришка стола форму прямоугольного паралелепіпеда?». І від- повідь на це питання залежить як від самої кришки, так і від наших вимог до її «отожняння». На- приклад, якщо купу стола закруг- лені, то ми можемо або проінту- вати це, або врахувати. Таким чи- ном, правильно формулювати це питання треба так: «Чи є прямоуг- кутний паралелепіпед якісною моделлю кришки стола?» і відпо- відь на нього залежить як від об’єктива стола, так і від на- ших суб’єктивних вимог.

Основні фігури геометрії є матема- тичними моделями об’єктів ре- ального світу, в яких «зали- шається» лише форма і розміри. Тому цілком природно розглядати геометрію як математичну мову для моделювання просторових відношень і форм, а також відно- шень і форм, які подібні просторовим. Розуміння цього і застосу- вання цього розуміння для роз- в’язання практичних задач необхідно сучасній людині неза- лежно від сфери її діяльності.

Геометрія як педагогічна задача

Зазначені характеристики гео- метрії як науки складають мето- долігічну основу для проектуван- ня шкільного предмета геометрії і природно приводять до основ- них завдань навчання геометрії в школі (див., наприклад, [3]):

1) розвитня образового, зок- рема просторового, мислення;
2) розвитня логічного мислення;
3) формування розуміння відношення між геометричними об’єктами та об’єктами реального світу, вміння застосовувати геометрію для розв’язування практичних задач.

Зазначено вище цілі навчання геометрії є загальновідомими. Але їх реалізація на практиці викликає чимало труднощів. Безумовно, значна частина матеріалу має об’єктивну природу: складність предмета, складність вибір діяльності, які мають опанувати учні. Свідоцтвом тому є світова історія реформування геометричної освіти упродовж XX ст. Сутність цих реформ яскраво виражають альтернативні гасла, під якими здійснювалися ці реформи: "Геть Евкліда!", «Назад до Евкліда!». Хоча у вітчизняній школі це реформування не було таким революційним, але воно суттєво вплинуло на сучасний стан у геометричній освіті.

Однією з причин (і, мабуть, найважливішою!) негараздів у навчанні геометрії у вітчизняній школі є невідповідне тлумачення розглянутих цілей у змісті і методах навчання.

Дійсно, ні в кого не викликає сумніву те, що розвивання образного мислення, зокрема просторового, є найважливішим завданням навчання геометрії. А які ви відповіді відповідають цьому? Адже розвивання образного мислення, яке захоплює його розвиток. Як в достатньому об’єкті вони представлені у змісті навчання, у навчальному процесі? Задовільні відповіді на ці питання немає у вітчизняній методичній літературі. Разом з цим, існує значний міжнародний досвід, який, безпечно, заслуговує на увагу (див., наприклад, [8]).

Грунтова психолого-педагогічна дослідження щодо формування образного і просторового видів мислення [10, 11] дозволяють стверджувати, що сформованість цих видів мислення характеризується оволодінням такими видами діяльності: розпізнавання образів; побудова образів; перетворення образів; перетворення, перебудова образів.

Вказані види діяльності недостатньо представлені і в змісті навчання, і в сучасних засобах навчання, на всіх ступенях навчання геометрії. Обґрунтування цього ви- сновку потребує додаткових аргументів. Але достатньо лише звернутися на тут, що в навчальних засобах навчання геометрії дуже мало завдань на роботу з рисунком, щоб уважись у цьому. Конструювання образів практично обмежується побудовою рисунків до задач. Цього занадто мало. Переконливий приклад того, як це можливо бути, містить книга [12].

Увагу до переміщення образів цілком характеризує представлення геометричних перетворень у сучасних вітчизняних засобах навчання. Геометричні перетворення — це рух у геометрії. Без них геометрія є статичною, нерухомою. Ще менше уваги в засобах навчання геометрії приймається найважливішим видом діяльності, які характеризують сформованість образного мислення, — перетворення образів і їх побудові.

Яскравою ілюстрацією неприйнятності змісту навчання геометрії у школі на формування просторового мислення є культивування "плоского" мислення в основній школі. Введення просторових дій у підручників математики для 5–6 класів і навіть для 9-х класів не спрощує цього зауваження.

Прагнення до систематичності вкладання планіметрії в основній школі є одним із проявів допустимої модернізації геометрії. Це неминуче виявляється в тривалістій пропозиції, а необхідно припустити до систематичної побудови просторової геометрії на асематичних засадах. Ще одним свідченням недостатньої уваги до формування просторового мислення є незначна участь у змісті навчання зображень та побудови на зображених.

У підручниках з геометрії практично не приймається увага на сторінках з нових фігур з даних. Крім того, у стереометрії основну увагу приймається обмеженому колу геометричних форм, практично «правильних». Це також є проявом недостатньої уваги до розвинення просторового мислення.

Розвинення логічного мислення учнів у сучасному навчанні геометрії дуже часто поіднімаються більш вузьким завданням — формуванням навичок формально-логічного мислення. Безумовно, це дуже важливе завдання. Але, по-перше, і це відзначають багато вчених, (див., наприклад, [8]), геометрія не є найрозважливішим для цієї мети полігоном, прийняти для більшості учнів. А по-друге, таких способів навчання є надто неефективним з позицій розвивального навчання.

Для розвинення уваги учні більш важливим є дотримання в навчанні певних інших рівнів строгості викладання навчального матеріалу, яким є:

1) рівень одноочуттевого обґрунтування (рівень здорового глузду);
2) "прикладний" рівень, на якому обґрунтування підлогають лише принципи яли поведення;
3) формально-логічний рівень.

Важливим є не лише розкриття цих рівнів, а й відповідний порядок просування за цими рівнями. Це тим більше важливо в умовах диференційованого навчання, коли учень свідомо може вибирати певний рівень навчання і на ньому залишатися.

Ігрування різних рівнів строгості викладення навчального матеріалу, ролі наочних і почуттєвих уявлень у геометрії призводить до
АКТУАЛЬНА ПРОБЛЕМА

tого, що геометрія стає складною,
а для значної кількості учнів
навіть і недоступною.

Таким чином, розвинення логічно-
го мислення не зводиться до систе-
матичного викладення доведень,
відтворення доведень і навіть само-
стійного їх проведення за зразком
і аналогією. Дійсно, хіба учень не
вчиться мислити і мислити логічно,
формуючи поняття. Формування
вміння переводити наочно-по-
чуттєве уявлення в ознаки гео-
метричних понять є основою з маги-
стральних ліній розвивання мис-
лення, зокрема логічного. Немає
жодних підстав ототожнювати ово-
lodіння аксіоматичним методом
з овоlodінням дедуктивним мето-
дом узагалі.

Та й рівень середньої школи не
здатний підійти до сучасного
розуміння побудови формальної
аксіоматичної теорії. Вона не за-
своюється навіть значною кількі-
стю студентів математичних фа-
культетів (ідеться, наприклад,
про формальну логіку, теорію до-
ведення, та й основи геометрії
в дусі книги Гільберта сприймають
ся важко). Тому не тільки авто-
ри шкільних підручників з гео-
mетрії, а й деякі їхні коментатори
яківно не праві, говорячи про фор-
mальну стрійкі побудови в них
аксіоматичної теорії. Мова може
йті хіба що про природність ос-
новних понять, аксіом та тверд-
жень, які не поступаються,
а вводяться в геометрію із модель-
nих мірувань, як «очевидні».
А головне — про неухильне дотри-
мання певного рівня строгості.

Щодо овоlodіння дедуктивним
методом узагалі (як тут не згадати
про дедуктивний метод III. Хол-
ма і не зацікавитись: а чи добре
він зграв геометрію?), то варто ще
згадати про значні можливості
в цьому «локальній дедукції»:
доведення окремих тезорем, роз-
в’язування задач «на доведення».
З усією відповідністю можна
стверджувати, що за останні деся-
tиріччя рівень підготовки учнів
у цьому плані різко знизився. Та
це й не дивно, якщо згадати про
зміст випускних завдань у школі
tа вступних до ВНЗ.

Не менше, а можливо і більше,
зауважень викликає реалізація в су-
часних засобах навчання геометрії
і третьої головної цілі — забезпе-
чення прикладної справоманні
навчання, формування світогляду.
Яскравою ілюстрацією з цього
приводу є досвід звернення авторів
tо до учнів старших класів з пита-
nями типу: «Чи є кришка стола
kімнати паралелепіпедом?».
Проблема не стільки
в тому, що на некоректність цього
запитання ніхто не звертав увагу.
Гірше те, що і роз’яснення неко-
ректності цього питання для баґа-
tьох учнів було незрозумілим.

Вивчення геометрії не сформувало
світогляд, розуміння того, що гео-
mетрія — це сприйняття людством
фізичного простору, що геометрія
вичав математичні моделі об’єк-
tів навколишнього середовища
і відношення між ними. А прояв-
ляється це в тому, що залежно від
обставин кришка стола може мо-
dелюватись паралелепіпедом,
прямокутником або більш складною
фігурою.

Таким чином, реалізація при-
кладної справоманні навчання
геометрії, його світоглядного по-
tенціалу невід’ємно пов’язана
з уведенням у навчання методу
математичного моделювання, зок-
рема геометричного моделювання.

Це стосується, у першу чергу, спо-
собу введення понять, вибору ідей
і методів геометрії, а вже потім —
роз’язування прикладних задач.
Дійсно, чи можуть учні роз-
в’язувати прикладні задачі без
відповідної теоретичної підгото-
вки, наприклад такі: «Запропонуй
те метод знаходження центра кера-
mічної плитки розмірами 20 х 15,
av якому в розпорядженні є оливць
і ще одна така сама плитка» або ж
«Як визначити діаметр циліндрич-
nого стержня за допомогою штан-
gенцірикуля, якщо відома довжина
ніжок штангенцирикуля, але вони
коротші за радіус стержня?»

Навіть найпростіші побутові зада-
чі, пов’язані з ремонтом житла,
розміщенням меблів у кімнаті
tощо, потребують певних навичок
геометричного моделювання.

Якщо вивчення теоретичного ма-
tеріалу не мотивається потребами
практики (у широкому розумінні
цього слова, бо йдеться, як ми
відзначали, не тільки про вклю-
чення до підручників прикладних
чи псевдоприкладних задач), то
така наука приречена на загибель.
Тут вже не допоможуть ні тради-
nі, ні штучна підтримка, ні високі
слов. Це якщо враховувати тен-
teнденції вільного вибору навчальних
dисциплін. Але навіть у тих реалі-
ях, які ми зараз маємо, відсутність
практичної мотивації вибиває із
фундаменту навчального процесу
один із наріжних каменів.

Реформування геометричної осві-
tи повинно починається з проекту-
вання нового змісту навчання гео-
mетрії. Сьогодні немає жодних
підстав для радикальних змін
у системі понять і фактів, які ви-
вчаються у шкільній геометрії.
Цього вимагає і концепція загаль-
ної середньої освіти в Україні, яка
передбачає еволюційно-прогнози-
чні зміни. Безумовно, проекту-
вати такі зміни на майбутнє треба
сьогодні в експериментальних
умовах, за рахунок варіативно-
ї складової навчання. Це стосується
і геометричних перетворень, і век-
торно-координаційного методу, і оз-
найомлення учнів з різними гео-
метріями. Але це не зміни, а їх
прогнозування. Сьогодні важливо
оновити види діяльності, які мо-
жуть бути забезпечені традицій-
nим змістом. У сучасних підруч-
никах геометрії широко представлен-
ні завдання наступних видів: довідеться, обчислюйте, і набагато рішше, побудуйте. Саме бідність набору видів геометричної діяль-
nості в навчанні, у разі завищеної
увахи до переліченних, є основним
недоліком змісту навчання геометрії в сучасній вітчизняній школі. Розширення видів діяльності, які формуються під час навчання геометрії, є магістральним шляхом реформування геометричної освіти. Заслуговує на увагу точка зору на цю проблему відомого педагога Глейзера Г. Д. [7]. Певною ілюстрацією реалізації за- значеної пропозиції може бути по- сібник [12].

Безумовно, що неможливо реформувати геометричну освіту, залишаючи весь обсяг змісту, який зараз представлено в засобах навчання. Та в цьому й нема потреби. Розвантаження шкільного курсу геометрії, особливо планіметрії, є важливим завданням реформування геометричної освіти. Наявність диференційованого навчання, зокрема в межах варіативного компоненту, дозволяє забезпечити високий рівень геометричної освіти для тих учнів, які можуть і хочуть цього.

Реформування геометричної освіти в підготовці і перепідготовці вчителів математики

Здійснення радикальних змін в освіті неможливе без відповідної підготовки вчителів. Тому реформування шкільної геометричної освіти потребує, в першу чергу, змін у підготовці і перепідготовці вчителів як психологіо-педагогічної, так і геометричної.

Взагалі, однією з головних причин вегетаріанід у шкільній геометричній освіті є негаразди в геометричній освіті у вищій педагогічній школі. Їх легко виявити, розглядаючи стандарти педагогічної освіти під час підготовки вчителя математики. Нам важко говорити конкретно взагалі про підготовку вчителів. Але що стосується геометричної-підготовки вчителів, які готують університети (а це значна частина вчителів і, мабуть, не найгірша), то ми впевнені, що вона недостатня для реформуван-ня геометричної освіти. Одна з го-ловних причин — неорієнтованість як фундаментальної, так профе- сійної складових на потребу су-часної геометрії. Дуже яскравою ілюстрацією цього є місце геометрич- них перетворень у змісті вищої геометричної освіти. І навіть ті мете- тоди, які культивуються у вищій школі, зокрема координаційний і векторний, не мають належного спрямування. Студенти практично не отримують чітких і прозорих уявлень про різноманіття гео- метрії, її особливості. Взагалі, вітчизняний рівень геометричної освіти дуже низький у вищій школі. Безумовно, обхідним є посилення уваги до методу мате- матичного моделювання, зокрема геометричного. Недостатньо можливо- стей для ознайомлення студентів з теорією зображень у стереометрії, з комбінаторними і топологічними методами в геометрії. Геометрична освіта вищій педагогічної школи знаходиться, практично, у такому ж становищі, як і геометрична освіта в загальноосвітній школі.

Декі висновки

Принципи трудових у забезпе- ченні якості шкільної геометрич- ної освіти мають два складові: об’єктивні і суб’єктивні.

Об’єктивні причини пов’язані з тим, що виконання геометрії по- требує гармонійного поєднання двох принципів різних видів діяльності: логічної і образної. Од- ним з наслідків цих труднощів є відсутність алгоритмів розв’язання типових задач.

Суб’єктивні причини пов’язані, в першу чергу, із розв’язуванням стратегічних проблем шкільної геометричної освіти: проектування її змісту, створення навчально-ме- тодичного забезпечення, підготов- ки та перепідготовки вчителів.

Напрями реформування геометрич- ної освіти:

АКТУАЛЬНА ПРОБЛЕМА

1. Посилення уваги до геометрії в початковій школі, у першу чергу до формування геометричних об- разів, конструювання фігур з ви- користанням їх фізичних моделей.
2. Перегляд геометричної освіти в 5—6 класах за обсягом, змістом, видами діяльності. Забезпечення засобами навчання експерименталь- ної і конструктивної діяль- ності учнів.
3. Розвантаження систематично- го курсу планіметрії у 7—9 класах від другорічних позитив і фактів за рахунок рівня строгості викла- дання. Забезпечення повноцінно- го знайомства зі стереометрією.
4. Формування різноманітних ва- ріантів профільного навчання гео- метрії і забезпечення навчальних засобами втілення їх у життя.

Література